上海财经大学 > 科学研究 > 学术交流 > 学术报告
  • 统计与管理学院2017年学术报告第66期

    【主 题】 Limiting Laws for Divergent Spiked Eigenvalues and Largest Non-spiked Eigenvalue of Sample Covariance Matrices

    【报告人】 潘光明 副教授

    新加坡南洋理工大学

    【时 间】 2017年11月17日(星期五)15:30-16:30

    【地 点】 上海财经大学统计与管理学院大楼一楼1208会议室

    摘 要】We study the asymptotic distributions of the spiked eigenvalues and the largest nonspiked eigenvalue of the sample covariance matrix under a general covariance matrix model with divergent spiked eigenvalues, while the other eigenvalues are bounded but otherwise arbitrary. The limiting normal distribution for the spiked sample eigenvalues is established. It has distinct features that the asymptotic mean relies on not only the population spikes but also the nonspikes and that the asymptotic variance in general depends on the population eigenvectors. In addition, the limiting Tracy-Widom law for the largest nonspiked sample eigenvalue is obtained. Estimation of the number of spikes and the convergence of the leading eigenvectors are also considered. The results hold even when the number of the spikes diverges